
Enhancements to HPCToolkit for
Analysis of CPU and GPU-accelerated

Applications
Laksono Adhianto and John Mellor-Crummey

Rice University

Scalable Tools Workshop 2025

HPCToolkit Workflow

● CPU profiling
○ Support for Intel Top-down analysis

● GPU profiling
○ Support for AMD, Intel and NVIDIA GPUs

● Access to remote databases
○ Have been used in several hackathon
○ Ongoing work to improve the performance

● Presentation
○ Updated Hpcviewer GUI with new look

HPCToolkit New Features and Enhancements

Support for Top-Down Model Analysis (TMA)

Level 1

Level 2

Level 3

Level 4

● Intel PERF_METRICS MSR: a special counter
to provide percentages of slots for four TMA
level 1 and four TMA level 2 metrics

● Four additional TMA level 2 metrics (Core
Bound, Fetch Bandwidth, Machine Clears and
Light Operations) can be derived from the
metrics

● Pros: No need to configure many counters

● Cons: Limited granularity, not a precise event,
update rate ~1-10ms (observed, not official
rate), not be suitable for fine-grain
measurement

PERF_METRICS MSR

Core_Bound = Backend_Bound - Memory_Bound
Fetch_Bandwidth = Frontend_Bound - Fetch_Latency
Machine_Clears = Bad_Speculation - Branch-Mispredict
Light_Operations = Retiring - Heavy_Operation

Tools Supporting Top-Down Analysis

Tool Mode Built-in top-down levels supported

Caliper Counting & Sampling Level 1-3

HPCToolkit Sampling Level 1-4 (mostly)

Likwid Counting Level 1 (at least)

Linux Perf stat Counting All levels, default level 1-2

PAPI Counting Level 1-2

Score-P Counting Level 1-2

VTune Sampling Level 1-4 and some level 5 & 6

https://github.com/RRZE-HPC/likwid/blob/df41fd0084c25467e62e1c2cd95165c9b7f47edd/groups/SRF/TMA.txt#L7
https://github.com/icl-utk-edu/papi/tree/72a3124d048dc5c89eb3f00c9f2866f4492b5383/src/components/topdown
https://github.com/score-p/scorep_plugin_topdown/tree/main

Issues Top-Down Analysis in Sampling Mode

● Issues with libpfm4
○ Bug in translating from top-down events to perf_event configuration
○ Fixed in the main branch, but not in the release

■ New TOPDOWN_M pseudo event to use PERF_METRICS MSR
● Issue with Intel perfmon JSON file

○ Incorrect specification of some top-down events: Serializing_Operation, AMX_Busy,
and Nop_Instructions

○ Fixed in the main branch
● Issue with Linux v5

○ Unable to group top-down events in sampling mode with perf_events
■ Grouping top-down events works fine in counting mode

○ Fixed in Linux v6

$ perf stat -e '{slots,topdown-bad-spec}' /bin/ls
... (success)

$ perf record -e '{slots,topdown-bad-spec}' /bin/ls
Error: The sys_perf_event_open() syscall returned with 22 (Invalid argument) for event (topdown-bad-spec).

$ perf record -e '{slots,topdown-bad-spec}:S' /bin/ls
Error: The sys_perf_event_open() syscall returned with 22 (Invalid argument) for event (topdown-bad-spec).

$ perf record -e '{slots,cycles,topdown-bad-spec}:S' /bin/ls
...(success)

Issue with Linux v5 (case with perf tool)

● Measurements
○ TMA level 1 and 2: use PERF_METRICS MSR
○ TMA level 3 and 4: use groups of hardware counters as specified in Intel JSON file

■ Avoid using all TMA metrics in JSON file, select only critical ones
■ Test usability of hardware counters before using them

CPU_CLK_UNHALTED.THREAD vs CPU_CLK_UNHALTED.THREAD_P
■ Avoid using deprecated counters

OFFCORE_REQUESTS_OUTSTANDING.ALL_DATA_RD vs OFFCORE_REQUESTS_OUTSTANDING.DATA_RD
○ Profiled with frequency-based sampling + multiplexing (time sharing)

Top-Down Analysis Implementation

Implementation Challenges

● So many events, so few registers
○ Even worse if SMT is enabled → even less registers
○ Multiplexing (time sharing) interpolates the samples → inaccuracy → uncertainty

● Accuracy issues
○ Some counters may overcount: FP scalars & FP vectors due to FMA instruction
○ Some counters may overlap: Branch resteers with MS switches, L3 hit latency with Contested

accesses, …

● Precision issues
○ PERF_METRICS MSR is not designed for fine-grain measurement, can we mix with precise events?

● Presentation: how to present effectively to users?
○ Calling-context tree + Top-down Metrics + source codes

Image taken from: Sudvarg, Li, et al. “Tintin: PMU Scheduling to Minimize Uncertainty.” 19th annual workshop on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT), July 2025

GPU Support in HPCToolkit
ROCm Level0 CUDA OpenCL

Profiling GPU Operations

Tracing of GPU operations

PC sampling

HW counters for kernel launches

Page migration; scratch space
mgmt

Binary instrumentation

Unreleased

Key Additions to AMD Rocprofiler-sdk API This Year

● Initialization: rocprofiler_configure/rocprofiler_force_configure
○ Integration with HPCToolkit was surprisingly subtle

■ Either HPCToolkit initialization or rocprofiler_configure callback may occur first
● HPCToolkit initialization of rocprofiler-sdk triggers rocprofiler_force_configure
● rocprofiler_configure triggers HPCToolkit initialization

■ Requires a “rendevous” so that all HPCToolkit initialization occurs within
prepare_measurement_subsystem and all rocprofiler-sdk initialization occurs in the
scope of a callback

● PC sampling configuration
○ Informs a tool which GPUs will be used by a process: enables selective configuration

New Design for HPCToolkit’s GPU Monitoring Substrate

● New design supports multiple monitoring threads
● GPU monitoring

○ CUDA: single monitoring thread
○ Level 0 and OpenCL: unspecified threads
○ AMD rocprofiler-sdk supports multiple monitoring threads

■ HW counter reporting
■ PC sample reporting
■ Activity API for reporting GPU operations

Runtime Processing of GPU Measurement Data

Vendor GPU Monitoring Concerns

● Intel Level0 reports distinct GPU binaries per MPI rank!
● Intel’s PTI View API is only half complete

○ Provides a completion callback that delivers a sequence of “activity records” for GPU ops
○ Lacking several key capabilities

■ initialization
■ intercept launch of GPU operations (for correlating them with their invocation context)

● AMD GPU OpenMP support is awkward
○ Had to use special ROCm API for monitoring rather than OMPT interface

● NVIDIA Activity API record for a kernel provides only string name
○ Lacks the precise attribution to function objects present in PC samples
○ Requires awkward recording of strings rather than addresses!

Tool Challenges and Approaches

● Tool code in the application namespace: unwanted interactions
○ Dangerous to load a tool’s C++ library in application namespace

■ Application and tool may be linked with different C++ libraries
○ Application symbols interfere with tools

■ Some applications use libunwind that conflict with our tools, others define mmap
■ Some versions of bash (e.g. RHEL 8) define getenv, which interferes with tool startup

● HPCToolkit, rocprofiler-sdk, PAPI, and libpfm all expect libc getenv
● Namespaces in Linux: dlmopen (glibc 2.3.4), LD_AUDIT (glibc 2.4)
● HPCToolkit

○ Uses multiple namespaces to avoid conflicts
○ Uses LD_AUDIT to monitor dynamic library loading and symbol binding

Software Infrastructure Woes

● Thread-local variables aren’t not async signal safe
○ https://sourceware.org/glibc/wiki/TLSandSignals

● Pthread keys don’t support multiple namespaces!
○ https://sourceware.org/bugzilla/show_bug.cgi?id=24776

● Worse: dynamic linker prior to glibc 2.34 uses pthread key
○ Support for multiple namespaces is broken on Aurora (glibc 2.31)

https://sourceware.org/glibc/wiki/TLSandSignals
https://sourceware.org/bugzilla/show_bug.cgi?id=24776

Pthread Keys don’t Support Multiple Namespaces!
typedef int (*pthread_key_create_t)(pthread_key_t *, void (*)(void*));
int main() {
 pthread_key_t k1, k2;

 int rc = pthread_key_create(&k1, NULL); // create key in the default namespace

 void *h = dlmopen(LM_ID_NEWLM, "libpthread.so.0", RTLD_LAZY); // open libpthread in a new namespace
 assert(h != NULL);
 // find pthread_key_create in the new namespace
 pthread_key_create_t fn = (pthread_key_create_t)dlsym(h, "pthread_key_create");
 assert(fn != NULL);

 rc = fn(&k2, NULL); // create a key in the new namespace
 assert(rc == 0);

 assert(k2 != k1); // the key is same in both namespaces

 return 0;
}

 assert fails on ALL Linux systems

Paul Pluzhnikov 2021-11-20 https://sourceware.org/bugzilla/show_bug.cgi?id=24776

https://sourceware.org/bugzilla/show_bug.cgi?id=24776

Summary

● Support for Top-down analysis
○ HPCToolkit provides metrics in different views and different scopes for procedures, loops or lines

○ Current support: Intel Sapphire Rapids or newer

■ Not supported: E-Core in hybrid architectures

■ Can be extended to other platforms: AMD and ARM and GPUs

○ Ongoing work: handle uncertainty

● Support for new GPU monitoring substrate, rocprofiler-sdk will soon be released

● Need continued engagement with Intel to get a usable PTI-View interface

● Re-engage Linux glibc team about improving support for namespaces, dynamic

linking, and LD_AUDIT

Backup Slides

Access to Remote Databases

Multi-producer, Single-consumer, Wait-free Queue

●

Note: sacrifice linearizability for wait-freedom

