Enhancements to HPCToolkit for
Analysis of CPU and GPU-accelerated
Applications

Laksono Adhianto and John Mellor-Crummey
Rice University

Scalable Tools Workshop 2025

HPCToolkit Wor

kflow

hpcrun
Profile execution on
—»| CPUs and GPUs Profile files |
hpcprof
Optimized Trace files | > Interpret profile & trace
binary Correlate with source
hpcestruct ﬁProgram I
i Analyzgﬁ;;(;s& GPU structure files Database
v v v
hpcviewer hpcserver hpcanalysis
Present profile and |« Read data and send to}- = = = » Framework for automated
trace view clients analysis of profile & trace data

HPCToolkit New Features and Enhancements

e CPU profiling

o Support for Intel Top-down analysis
e GPU profiling

o Support for AMD, Intel and NVIDIA GPUs
e Access to remote databases

o Have been used in several hackathon
o Ongoing work to improve the performance

e Presentation
o Updated Hpcviewer GUI with new look

Support for Top-Down Model Analysis (TMA)

One Bottlenecks Hierarchy*

i NG oo B DR i)
A
Level 1 Retirin Bad Frontend Backend Bound
& Speculation Bound
\ k -
g g || g Fetch
- 5 || £ Fetch S
Level 2 Light O 2| € Band- Core Memory Bound
Operations || ol o Latency || width Bound
o]] P L
g > o \ \ Y,
e w2 o
= w2 9| =[N . Slolol|o
Els 2|2 Zlgle 5| Execution § SIS/ S| pram
Level 3 = | £ afl<|e|sls]| |3 Ports 2 |l@|&| @ | Bound
£ 18 S8l 1212 8] vttization || € 1= [& | S [| BOUN
A =l 2 (|| 1= = =
a | 0
5 —
@ £
= £ =35=¢T
Level4 |5|E g RS
@l o 50§

*Reference paper: A. Yasin, “A Top-Down Method for Performance Analysis and Counters Architecture”, ISPASS 2014

Ahmad Yasin — Top-down Analysis for Optimizing OOO Cores’ Performance — TAU 2020

PERF_METRICS MSR

Intel PERF_METRICS MSR: a special counter
to provide percentages of slots for four TMA
level 1 and four TMA level 2 metrics

Four additional TMA level 2 metrics (Core
Bound, Fetch Bandwidth, Machine Clears and
Light Operations) can be derived from the
metrics

Pros: No need to configure many counters

Cons: Limited granularity, not a precise event,
update rate ~1-10ms (observed, not official
rate), not be suitable for fine-grain
measurement

Backend Bound Frontend Bound Bad Speculation Retiring

31 23 15 7 0

Memory Bound Fefch Latency Branch Mispredicts Heavy Operations

63 55 47 39 32

Figure 21-40. PERF_METRICS MSR Definition for 12th Generation Intel® Core™ Processor P-core

Core_Bound = Backend_Bound - Memory_Bound
Fetch_Bandwidth = Frontend_Bound - Fetch_Latency
Machine_Clears = Bad_Speculation - Branch-Mispredict
Light_Operations = Retiring - Heavy_Operation

Tools Supporting Top-Down Analysis

Tool Mode Built-in top-down levels supported
Caliper Counting & Sampling Level 1-3
HPCToolkit Sampling Level 1-4 (mostly)
Likwid Counting Level 1 (at least)
Linux Perf stat Counting All levels, default level 1-2
PAPI Counting Level 1-2
Score-P Counting Level 1-2

VTune Sampling Level 1-4 and some level 5 & 6

https://github.com/RRZE-HPC/likwid/blob/df41fd0084c25467e62e1c2cd95165c9b7f47edd/groups/SRF/TMA.txt#L7
https://github.com/icl-utk-edu/papi/tree/72a3124d048dc5c89eb3f00c9f2866f4492b5383/src/components/topdown
https://github.com/score-p/scorep_plugin_topdown/tree/main

Issues Top-Down Analysis in Sampling Mode

e Issues with libpfm4
o Bug in translating from top-down events to perf_event configuration

o Fixed in the main branch, but not in the release
m New TOPDOWN_M pseudo event to use PERF_METRICS MSR

e Issue with Intel perfmon JSON file

o Incorrect specification of some top-down events: Serializing_Operation, AMX_Busy,
and Nop_Instructions
o Fixed in the main branch

e |ssue with Linux v5

o Unable to group top-down events in sampling mode with perf_events
m Grouping top-down events works fine in counting mode
o Fixed in Linux v6

Issue with Linux v5 (case with perf tool)

$ perf stat -e '{slots, topdown-bad-spec}' /bin/ls
... (success)

$ perf record -e '{slots, topdown-bad-spec}' /bin/ls
Error: The sys_perf_event_open() syscall returned with 22 (Invalid argument) for event (topdown-bad-spec).

S perf record -e '{slots, topdown-bad-spec}:S' /bin/ls
Error: The sys_perf_event_open() syscall returned with 22 (Invalid argument) for event (topdown-bad-spec).

$ perf record -e '{slots,cycles, topdown-bad-spec}:S' /bin/1ls
...(success)

Top-Down Analysis Implementation

e Measurements

o TMAlevel 1 and 2: use PERF_METRICS MSR
o TMAlevel 3 and 4: use groups of hardware counters as specified in Intel JSON file

Avoid using all TMA metrics in JSON file, select only critical ones
Test usability of hardware counters before using them

CPU_CLK_UNHALTED.THREAD VS CPU_CLK_UNHALTED.THREAD_P
m Avoid using deprecated counters

OFFCORE_REQUESTS_OUTSTANDING.ALL_DATA_RD VS OFFCORE_REQUESTS_OUTSTANDING.DATA_RD
o Profiled with frequency-based sampling + multiplexing (time sharing)

with Multiplexing w.o. Multiplexing
: | lati
Implementation Challenges , | Valve wiipong "

. _ ’f -~ \ rror \’ =

= - -

S » r2 r3

> >
al b1 a2 b2 a3 b3 Time al bl a2 b2 a3 b3 Time

e So many events, so few registers
o Even worse if SMT is enabled — even less registers
o Multiplexing (time sharing) interpolates the samples — inaccuracy — uncertainty

e Accuracy issues

o Some counters may overcount: FP scalars & FP vectors due to FMA instruction

o Some counters may overlap: Branch resteers with MS switches, L3 hit latency with Contested
accesses, ...

e Precision issues
o PERF_METRICS MSR is not designed for fine-grain measurement, can we mix with precise events?

e Presentation: how to present effectively to users?
o Calling-context tree + Top-down Metrics + source codes

Image taken from: Sudvarg, Li, et al. “Tintin: PMU Scheduling to Minimize Uncertainty.” 19th annual workshop on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT), July 2025

| &
[BN] hpcviewer

E5 Profile: single.nooffload.gcc.cpu [% Profile: lulesh2.0 S5E

Topdown metrics X]

~ [48.5% Active ()
v [l 47.6% Retiring: Sum (1)
v . 1.3% Heavy-Operations: Sum (l)
" 1.3% Uops Sequencer (1)
0.0% Few_Uops_Instructions (1)
~ [} 46.3% Light-Operations (1)
v 29.8% FP-Arithmetic (1)
0.0% X87-Use (1)
21.3% Instr-Scalar (I)
8.5% Instr-Vector (1)
0.0% Int-Operations (1)
16.5% Mem-operations ()
~ [l 0.9% Bad-Speculation: Sum (1)
0.7% Mispredict: Sum (1)
0.2% Machine-Clears (l)
v [l515% stall (1)
v [l 2.5% Frontend-Bound: Sum (1)
v [1.0% Fetch-Latency: Sum (I)
B 0.3% ICache-Miss (1)
B 0.1% ITLB-Miss (1)
v [0.7% Branch-Resteer (1)
1 0.0% unknown_branch (1)
M 1.4% Fetch-Banduwidth (1)
~ [l 49.1% Backend-Bound: Sum (1)
6.0% Memory-Bound: Sum (I}
5.0% L1-Bound (I)
[0.4% L2-Bound (1)
3.3% L3-Bound (1)
+ [0.5% DRAM-Bound (1)
0.2% DRAM-Bandwidth (1)
0.3% DRAM-Latency (1)
6.7% Store-Bound ()
v [l 33.1% Core-Bound (1)
33.1% Arith-Divider (1)
0.0% Serialization (1)
0.0% AMX-Busy (1)

Topdown metrics of [I] CalcElemFBHourglassForce

Top-down view‘t Bottom-up view [Flat view |

TE=EHHS 0« QQ K-A

Scope Total-Slots (1) | Total-Slots (E) l
4 Experiment Aggregate Metrics 3.00e+11 100.0% 3.00e+11 100.0%
4 <thread root> 1.59e+11 53.1%
4 » gomp_thread_start [libgomp.s0.1.0.0] 1.59e+11 53.1% 9.18e+08 0.3%
4 loop at team.c: 139 1.59e+11 53.1% 9.18e+08 0.3%
» 130 » gomp_team_barrier_wait_end [libgomp.s0.1.0.0] 2.61e+10 8.7%
4129 » CalcFBHourglassForceForElems(Domain&, double®, double*, double*, double*, double®, double®, double*, double, int, i... | 2.51e+10 8.4% 8.03e+09 2.7%
4 |loop at lulesh.cc: 824 2.51e+10 8.4% 2.30e+09 0.8%
4923 » [I] CalcElemFBHourglassForce 1.11e+10 3.7% 1.1le+10 3.7%
lulesh.cc: 726 1.95e+09 0.6% 1.95e+09 0.6%
lulesh.cc: 724 1.29e+09 0.4% 1.29e+09 0.4%
lulesh.cc: 702 1.26e+09 0.4% 1.26e+09 0.4%
lulesh.cc: 720 9.09e+08 0.3% 9.09e+08 0.3%

GPU Support in HPCToolkit Unreleased
ROCm LevelO CUDA | OpenCL

Profiling GPU Operations

Tracing of GPU operations

)
PC sampling C]
—

HW counters for kernel launches

S
)
Page migration; scratch space
mgmt —

Binary instrumentation

Key Additions to AMD Rocprofiler-sdk APl This Year

e |Initialization: rocprofiler_configure/rocprofiler_force configure
o Integration with HPCToolkit was surprisingly subtle
m Either HPCToolkit initialization or rocprofiler _configure callback may occur first
e HPCToolkit initialization of rocprofiler-sdk triggers rocprofiler_force configure
e rocprofiler_configure triggers HPCToolkit initialization
m Requires a “rendevous” so that all HPCToolkit initialization occurs within
prepare_measurement_subsystem and all rocprofiler-sdk initialization occurs in the
scope of a callback

e PC sampling configuration
o Informs a tool which GPUs will be used by a process: enables selective configuration

New Design for HPCToolkit's GPU Monitoring Substrate

e New design supports multiple monitoring threads

e GPU monitoring
o CUDA: single monitoring thread
o Level 0 and OpenCL.: unspecified threads
o AMD rocprofiler-sdk supports multiple monitoring threads
m HW counter reporting
m PC sample reporting
m Activity API for reporting GPU operations

Runtime Processing of GPU Measurement Data

Monitoring threads

<<put>>

A

<<get>>

[ThreadID: MPSCQ]
associative container

Application threads

Thread 1
GPU operation
submission callback

Thread 2

< GPU operation
<_| submission callback

Activity MPSC queues

<<put>>

Thread 3
GPU operation i
' submission callback l Ca”mg
context
trees

Thread 1
Process/attribute

Tracing threads

Trace MPSC queues

Stream 1

= Stream 2 '

activities

IThread 4
GPUAPI
completion callback

vy

Thread 5
GPUAPI
completion callback

Thread 2

Process/attribute
activities

Process/attribute
activities

Vendor GPU Monitoring Concerns

e Intel LevelO reports distinct GPU binaries per MPI rank!
e |Intel’'s PTI View APl is only half complete

o Provides a completion callback that delivers a sequence of “activity records” for GPU ops
o Lacking several key capabilities
m initialization
m intercept launch of GPU operations (for correlating them with their invocation context)

e AMD GPU OpenMP support is awkward
o Had to use special ROCm API for monitoring rather than OMPT interface
e NVIDIA Activity API record for a kernel provides only string name

o Lacks the precise attribution to function objects present in PC samples
o Requires awkward recording of strings rather than addresses!

Tool Challenges and Approaches

e Tool code in the application namespace: unwanted interactions
o Dangerous to load a tool's C++ library in application namespace
m Application and tool may be linked with different C++ libraries
o Application symbols interfere with tools
m Some applications use libunwind that conflict with our tools, others define mmap
m Some versions of bash (e.g. RHEL 8) define getenv, which interferes with tool startup
e HPCToolkit, rocprofiler-sdk, PAPI, and libpfm all expect libc getenv

e Namespaces in Linux: dimopen (glibc 2.3.4), LD_AUDIT (glibc 2.4)
e HPCToolkit

o Uses multiple namespaces to avoid conflicts
o Uses LD_AUDIT to monitor dynamic library loading and symbol binding

Software Infrastructure Woes

e Thread-local variables aren’t not async signal safe
o https://sourceware.org/glibc/wiki/TLSandSignals

e Pthread keys don’t support multiple namespaces!
o https://sourceware.org/bugzilla/show_bug.cqi?id=24776

e Worse: dynamic linker prior to glibc 2.34 uses pthread key
o Support for multiple namespaces is broken on Aurora (glibc 2.31)

https://sourceware.org/glibc/wiki/TLSandSignals
https://sourceware.org/bugzilla/show_bug.cgi?id=24776

Pthread Keys don’t Support Multiple Namespaces!

typedef int (*pthread key create_t) (pthread key t *, void (*) (void¥));
int main() {
pthread key t k1, k2;

int rc = pthread key create(&kl, NULL); // create key in the default namespace

void *h = dlmopen (LM ID NEWLM, "libpthread.so.0", RTLD LAZY); // open libpthread in a new namespace
assert(h '= NULL) ;

// find pthread key create in the new namespace

pthread key create t fn = (pthread key create t)dlsym(h, "pthread key create");

assert(fn != NULL) ;

rc = fn(&k2, NULL) ; // create a key in the new namespace
assert(rc == 0);

assert (k2 '= kl1); // the key is same in both namespaces
return O;

assert fails on ALL Linux systems

Paul Pluzhnikov 2021-11-20 https://sourceware.ora/bugzilla/show bug.cqi?id=24776

https://sourceware.org/bugzilla/show_bug.cgi?id=24776

Summary

Support for Top-down analysis

o HPCToolkit provides metrics in different views and different scopes for procedures, loops or lines
o Current support: Intel Sapphire Rapids or newer

m Not supported: E-Core in hybrid architectures

m Can be extended to other platforms: AMD and ARM and GPUs
o Ongoing work: handle uncertainty

Support for new GPU monitoring substrate, rocprofiler-sdk will soon be released
Need continued engagement with Intel to get a usable PTI-View interface

Re-engage Linux glibc team about improving support for namespaces, dynamic
linking, and LD_AUDIT

Backup Slides

Access to Remote Databases

Login node
hpcviewer /
User client TpCseivet
SRR > - hpeserver is launched.
hipcsarver location 'SSH user@host exec hpcserver > - SSnd the current IP address
and the UNIX socket
1. Connect and launch hpcserver; <t Sending the ip-address and UNIX socket,
open SSH tunnel on the remote UNIX socket
'SSH tunnel at the UNIX socket’ >
=2 READY,
2. Browse the remote directory to select a ‘GET list directories >>
database to display
<€ INFO list of di file:
browsing remote directory
Select database ™3>
SELECT
hpcserver spawns a new
bSending the UNIX socket for hpc: datab thread
3. Open a SSH tunnel to communicate with
hpcserver-dbmanager 'SSH tunnel at the UNIX socket
3
request
<t por
Close database™—————————3>
'CLOSE’
4. Close the database
remove the UNIX socket
and terminate
database manager thread

Multi-producer, Single-consumer, Wait-free Queue

O 00NN A WN =

struct Element
Element *next, Record r
struct Queue
Element =xhead, Element xtail

procedure init (Queue q)
g.head = NULL; g.tail = NULL

procedure enqueue (Queue g, Element e)
atomic_store (&e.next, NULL)
previous_tail = atomic_exchange (&g.tail, e)
if previous_tail is NULL then
atomic_store (&g.head, e)
else
atomic_store (&previous_tail.next, e)

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

function dequeue (Queue q)
first = atomic_load(&g.head)
if first is NULL then return NULL
successor = atomic_load(&first->next)
if successor is not NULL then
atomic_store (&g—->head, successor)
return first
else if atomic_compare_exchange (
&q.tail, &first,
expected_head = first
atomic_compare_exchange (&Q.head,
&expected_head, NULL)
return first
else
return NULL

NULL)

Note: sacrifice linearizability for wait-freedom

